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Introduction

Cephalometric landmark detection (or digitization) is crucial for Image-based method S
craniomaxillofacial (CMF) surgical planning, directly influencing surgical W\ cranial
outcomes. Current methods rely either solely on cone-beam computed @ ik u
tomography (CBCT) images (Fig. 1a) or 3D bony mesh models (Fig. @ fﬁ/ 1 midfacef LY

1b), limiting their accuracy due to modality-specific constraints. Image- CBCT image CNNs Lang e naD o=
based methods lack sensitivity to subtle anatomical variations, whereas (volumetric data) (volumetric data) N’
mesh-based methods often fail in locally ambiguous regions due to the Meshbased method =
absence of contextual image information. We propose an integrated 7oy and.me et
approach utilizing both CBCT images and 3D bone models to improve & -+ X
landmark detection accuracy. | :‘;
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Our key contributions are: (graph data) (graph data) (c)
1. Proposing a hybrid approach that leverages complementary Fig. 1. Cephalometric landmark detection.

information from CBCT images and 3D bone models.

2. Introducing a novel CNN-GCN hybrid network, Graph-/Image-

aware Network (GrlmNet), featuring an end-to-end differentiable
mesh sampling layer. A. Data preparation
3. Developing a landmark contrastive regularization strategy fo CBCT images and corresponding bone segmentation masks are resampled uniformly to
enhance feature discriminability and detection accuracy. generate 3D triangle-mesh bone models. Each mesh vertex is associated with an 8-
dimensional geometric feature vector describing its local geometry.
(a) Data preparation (b) Graph-/Image-aware network (GrimNetl) (c) Landmark contrastive regularization
T 1 B. Graph-/Image-aware Network (GrimNet)
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Fig. 2. Scheme of the proposed GrimNet method for cephalometric landmark detection. i

Experimental Results

A. Dataset and Metric C. Ablation Study

. . - - . Di M D
We conducted experiments using a clinical dataset containing 56 subjects. SUEIIEE @71y [ WEEEID]) i)

Each subject includes a whole head CBCT image, a mandible segmentation

Midface Mandible All

U-Net 2.38(1.24)* 2.43(1.36)* 2.39(1.28)*

mask with K, ... = 24 mandible landmarks, and a midface segmentation mask ( )* ( )* ( )*
mandible GCN 2.97(7.99) 2.80(3.13) 2.91(6.77)

with K_...... = 12 midface landmarks. We evenly divided the dataset into four " "
midface e ) . U-Net + GCN 1.84(1.35) 2.01(2.32) 1.90(1.73)

parts and performed 4-fold cross-validation (three/one folds for training/testing, - . ) 5
fivelv) f luat Dist f th dicted land K to th U-Net + GCN + L.,,, (w/o end-to-end training) 2.04(1.595) 2.44(3.54) 2.17(2.41)
respectively) for evaluation. Distance error from the predicted landmark to the GrimNet (proposed) 1.76(1.50) 1.94(1.64) 1.82(1.55)

ground-truth landmark was used as the metric to quantitatively assess the
model performance. Paired t-tests were conducted to investigate the statistical

significance ("*": p<0.05) between the results yielded from different methods. Conclusion
B. Comparison with Other Methods Our study demonstrates that integrating CBCT image information with geometric
data from 3D bony mesh models significantly improves cephalometric landmark

Distance error [Mean(SD) mm] detection accuracy. The proposed GrimNet, featuring a differentiable mesh
Midface Mandible All sampling mechanism and landmark contrastive regularization, provides a robust
and precise solution suitable for clinical adoption, enhancing CMF surgical

U-Net [l Image-based 2.38(1.24)* 2.43(1.36)* 2.39(1.28)* _
_ _ planning workflows.

U-Net 'l (high resolution)  Image-based 2.24(1.22)* 2.29(1.36)* 2.25(1.26)*
Skull-engine [ Image-based 3.66(2.92)* 2.93(2.79)* 3.41(2.89)*
GCN in [4] Mesh-based 1.89(2.20)* 2 41(3.53)" 2.06(2.73)" References
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