
Experimental Results

A. Dataset and Metric

We conducted experiments using a clinical dataset containing 56 subjects. 

Each subject includes a whole head CBCT image, a mandible segmentation 

mask with Kmandible = 24 mandible landmarks, and a midface segmentation mask 

with Kmidface = 12 midface landmarks. We evenly divided the dataset into four 

parts and performed 4-fold cross-validation (three/one folds for training/testing, 

respectively) for evaluation. Distance error from the predicted landmark to the 

ground-truth landmark was used as the metric to quantitatively assess the 

model performance. Paired t-tests were conducted to investigate the statistical 

significance (“*”: p<0.05) between the results yielded from different methods.

B. Comparison with Other Methods

C. Ablation Study
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Methods Type
Distance error [Mean(SD) mm]

Midface Mandible All

U-Net [1] Image-based 2.38(1.24)* 2.43(1.36)* 2.39(1.28)*

U-Net [1] (high resolution) Image-based 2.24(1.22)* 2.29(1.36)* 2.25(1.26)*

Skull-engine [3] Image-based 3.66(2.92)* 2.93(2.79)* 3.41(2.89)*

GCN in [4] Mesh-based 1.89(2.20)* 2.41(3.53)* 2.06(2.73)*

U-Net + segmentation Image&mesh 2.35(1.19)* 2.33(1.24)* 2.34(1.21)*

U-Net + mesh attaching Image&mesh 2.14(1.32)* 2.08(1.52)* 2.12(1.39)*

GrImNet (proposed) Image&mesh 1.76(1.50) 1.94(1.64) 1.82(1.55)

Models
Distance error [Mean(SD) mm]

Midface Mandible All

U-Net 2.38(1.24)* 2.43(1.36)* 2.39(1.28)*

GCN 2.97(7.99)* 2.80(3.13)* 2.91(6.77)*

U-Net + GCN 1.84(1.35)* 2.01(2.32) 1.90(1.73)*

U-Net + GCN + 𝐿𝑐𝑜𝑛 (w/o end-to-end training) 2.04(1.55)* 2.44(3.54)* 2.17(2.41)*

GrImNet (proposed) 1.76(1.50) 1.94(1.64) 1.82(1.55)
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Fig. 1. Cephalometric landmark detection.

Introduction

Cephalometric landmark detection (or digitization) is crucial for 

craniomaxillofacial (CMF) surgical planning, directly influencing surgical 

outcomes. Current methods rely either solely on cone-beam computed 

tomography (CBCT) images (Fig. 1a) or 3D bony mesh models (Fig. 

1b), limiting their accuracy due to modality-specific constraints. Image-

based methods lack sensitivity to subtle anatomical variations, whereas 

mesh-based methods often fail in locally ambiguous regions due to the 

absence of contextual image information. We propose an integrated 

approach utilizing both CBCT images and 3D bone models to improve 

landmark detection accuracy.

Our key contributions are:

1. Proposing a hybrid approach that leverages complementary 

information from CBCT images and 3D bone models.

2. Introducing a novel CNN-GCN hybrid network, Graph-/Image-

aware Network (GrImNet), featuring an end-to-end differentiable 

mesh sampling layer.

3. Developing a landmark contrastive regularization strategy to 

enhance feature discriminability and detection accuracy.
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Conclusion

Our study demonstrates that integrating CBCT image information with geometric 

data from 3D bony mesh models significantly improves cephalometric landmark 

detection accuracy. The proposed GrImNet, featuring a differentiable mesh 

sampling mechanism and landmark contrastive regularization, provides a robust 

and precise solution suitable for clinical adoption, enhancing CMF surgical 

planning workflows.

Method

B. Graph-/Image-aware Network (GrImNet)

The proposed GrImNet integrates image data via a U-

Net[1] and geometric data via a Graph Convolutional 

Network (GCN)[2]. A differentiable mesh sampling layer 

connects these networks, enabling end-to-end training 

and aligning image and mesh features for precise 

landmark detection.

C. Landmark Contrastive Regularization

CBCT images and corresponding bone segmentation masks are resampled uniformly to 

generate 3D triangle-mesh bone models. Each mesh vertex is associated with an 8-

dimensional geometric feature vector describing its local geometry.

A. Data preparation

Fig. 2. Scheme of the proposed GrImNet method for cephalometric landmark detection.

A novel contrastive regularization strategy enhances 

feature discriminability by maximizing similarity among 

identical landmarks and minimizing it across different 

landmarks, improving detection accuracy.
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