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Method

A. 3D Facial Landmark Extraction using Adapted MediaPipe!* Model

Introduction

Accurate mandibular deformity diagnosis Is
crucial for orthognathic surgery but often relies on
the clinician’s experience, introducing subjectivity
and variability. Traditional methods!}2 using
specific bony anatomical landmarks oversimplify
the complex facial structures and can be
inconsistent. Machine learning approachl®!
requires precise segmentation of bony structures
from CBCT Iimages, which is labor-intensive, time-
consuming, and exposes patients to radiation.

We introduce a workflow that adapts an off-the-shelf 2D facial landmark detection
model (Google’s MediaPipel#) for 3D facial landmark extraction from CBCT/3dMD
Images. This Is achieved by projecting 3D facial surfaces into 2D images and
using ray casting to back-project detected 2D landmarks onto the 3D surface. A
final set of 328 stable landmarks is selected based on detection reliability across
subjects.
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Nogmal vs. Retrognathic 2D - 3D facial landmark back-projection

We propose a Diagnhosis-Reconstruction Transformer (DiRecT) for diagnosing
mandibular deformities with two key contributions:

1. Simplified process: Instead of using bony landmarks, we utilize facial soft
tissue landmarks that can be easily detected by off-the-shelf models,
streamlining the diagnostic process.

478 facial landmarks
(328 most relevant onesare used)

2. Innovative DiRecT network: Our DiRecT network integrates landmark
reconstruction within a teacher-student framework. This reduces reliance on
labeled data and achieves performance comparable to even better than
traditional methods, while significantly simplifying the diagnostic process.
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Fig. 1. 3D facial landmark extraction through 2D facial landmark detection model.

B. DiRecT Network for Mandibular Deformity Diagnosis

Diagnoser (student) Reconstructor

The proposed DiRecT network consists of two transformer®-based components:

*Diagnoser: Takes 3D facial landmarks as input and generates a class
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C. Semi-Supervised Learning with Teacher-Student Diagnoser
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* To leverage both labeled and unlabeled data, we implement a teacher-
student framework, where the teacher network guides the student network
using consistency constraint, calculated between class tokens of original
and augmented landmarks. This enables training on unlabeled data,
expanding the dataset and improving performance.
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Fig. 2. Scheme of the DiRecT network and teacher-student training framework.
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* The overall training objective combines diagnostic loss Lg;,4, reconstruction

loss L...,, and consistency loss L., With a weight A for the consistency
loss increasing linearly during training to avoid instability.

Results

A. Datasets and Metric C. Ablation Study

Accuracy [%]
Retrognathic Prognathic

We used two datasets: an in-house clinical dataset of 101 subjects with CBCT
Images labeled by a senior surgeon into three mandibular deformity categories

Models

Normal

(normal, retrognathic, prognathic), and the Headspace dataset!® with 1,519 Laiag 47.37 84.21 81.82 76.24
subjects of unlabeled 3D head images (917 subjects within suitable age range Laiag + Lreco 52.63 92.11 79.55 79.21
were used). Using our pipeline, we extracted 328 facial landmarks per subject. Laiag + Lcons 42.11 92.11 84.09 79.21
We used the Headspace data as unlabeled data for semi-supervised training and Laiag + Lreco + Leons 57.89 92.11 86.36 83.17
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